12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088 |
- from base_class import BaseVariableFunction
- from base_class import *
- baseclass = BaseVariableFunction(__file__)
- baseclass.makedirpath(baseclass.dalao_profit_st_fm_path)
- baseclass.makedirpath(baseclass.dalao_ana_fm_path)
- baseclass.makedirpath(baseclass.dalao_total_ana_fm_path)
- baseclass.open_base_library()
- decimal.getcontext().prec = 100
- old_print = print
- def timestamped_print(*args, **kwargs):
- old_print(datetime.datetime.utcnow().replace(
- microsecond=0), *args, **kwargs)
- print = timestamped_print
- print('\n'*5)
- print(f"{'{:<6}'.format('ENTER')} {baseclass.scriptfilename} ----------------NOTE-----------NOTE---------------")
- onedalao_ana_columns = ['TokenFirstTime', 'swap_tokenaddress', "issellfir", 'buy_counts', 'sell_counts',
- 'outtoken_per', 'cost_main', 'earn_main', 'earn_percent' ,
- 'diffdays','fir_cost_main','fir_earn_percent' , 'fir_noadd_earn_percent']
-
- onetxhash_onerow_ana_cols= [
- "sign","swap_tokenaddress","dexurl","platform","datetime",
- "dalaofirsttimestamp","diffdays",
- "fir_cost_main","fir_earn_percent","issellfir",
- "fir_noadd_earn_percent","token_price", "buy_sell_diftime",
- "swap_type",
- "outtoken_per",
- "buy_counts","sell_counts",
- "timestamp","TokenFirstTime",
- "swap_eth_amount","swap_token_amount",
- "cost_main","earn_main","earn_percent",
- "intoken_amount","outtoken_amount",
- ]
-
- TotalAnalysis_columns = [
- "add",
- # "whichcontract",
- "url",
- "beizhu",
- "03d_cost",
- "03d_earn",
- "03d_earnper",
- "03d_difcost",
- "03d_difearn",
- "03d_difper",
- "03d_costmedian",
- "03d_costmean",
- "03d_cost_noaddouttoken",
- "03d_earn_noaddouttoken",
- "03d_earnper_noaddouttoken",
- # "03d_difcost_noaddouttoken",
- # "03d_difearn_noaddouttoken",
- # "03d_difper_noaddouttoken",
- # "03d_costmedian_noaddouttoken",
- # "03d_costmean_noaddouttoken",
- "03d_mine_fir_earnper",
- "03d_mine_fir_earnper_dropmax",
- "03d_mine_fir_earnper_droptwomax",
- "03d_mine_noadd_fir_earnper" ,
- "03d_mine_noadd_fir_earnper_dropmax" ,
- "03d_mine_noadd_fir_earnper_droptwomax" ,
- "03d_trans",
- "07d_cost",
- "07d_earn",
- "07d_earnper",
- "07d_difcost",
- "07d_difearn",
- "07d_difper",
- "07d_costmedian",
- "07d_costmean",
- "07d_cost_noaddouttoken",
- "07d_earn_noaddouttoken",
- "07d_earnper_noaddouttoken",
- # "07d_difcost_noaddouttoken",
- # "07d_difearn_noaddouttoken",
- # "07d_difper_noaddouttoken",
- # "07d_costmedian_noaddouttoken",
- # "07d_costmean_noaddouttoken",
- "07d_mine_fir_earnper",
- "07d_mine_fir_earnper_dropmax",
- "07d_mine_fir_earnper_droptwomax",
- "07d_mine_noadd_fir_earnper" ,
- "07d_mine_noadd_fir_earnper_dropmax" ,
- "07d_mine_noadd_fir_earnper_droptwomax" ,
- "07d_trans",
- # "11d_cost",
- # "11d_earn",
- # "11d_earnper",
- # "11d_difcost",
- # "11d_difearn",
- # "11d_difper",
- # "11d_costmedian",
- # "11d_costmean",
- # "11d_cost_noaddouttoken",
- # "11d_earn_noaddouttoken",
- # "11d_earnper_noaddouttoken",
- # # "11d_difcost_noaddouttoken",
- # # "11d_difearn_noaddouttoken",
- # # "11d_difper_noaddouttoken",
- # # "11d_costmedian_noaddouttoken",
- # # "11d_costmean_noaddouttoken",
- # "11d_mine_fir_earnper",
- # "11d_mine_fir_earnper_dropmax",
- # "11d_mine_fir_earnper_droptwomax",
- # "11d_mine_noadd_fir_earnper" ,
- # "11d_mine_noadd_fir_earnper_dropmax" ,
- # "11d_mine_noadd_fir_earnper_droptwomax" ,
- # "11d_trans",
- "15d_cost",
- "15d_earn",
- "15d_earnper",
- "15d_difcost",
- "15d_difearn",
- "15d_difper",
- "15d_costmedian",
- "15d_costmean",
- "15d_cost_noaddouttoken",
- "15d_earn_noaddouttoken",
- "15d_earnper_noaddouttoken",
- # "15d_difcost_noaddouttoken",
- # "15d_difearn_noaddouttoken",
- # "15d_difper_noaddouttoken",
- # "15d_costmedian_noaddouttoken",
- # "15d_costmean_noaddouttoken",
- "15d_mine_fir_earnper",
- "15d_mine_fir_earnper_dropmax",
- "15d_mine_fir_earnper_droptwomax",
- "15d_mine_noadd_fir_earnper" ,
- "15d_mine_noadd_fir_earnper_dropmax" ,
- "15d_mine_noadd_fir_earnper_droptwomax" ,
- "15d_trans",
-
- "30d_cost",
- "30d_earn",
- "30d_earnper",
- "30d_difcost",
- "30d_difearn",
- "30d_difper",
- "30d_costmedian",
- "30d_costmean",
- "30d_cost_noaddouttoken",
- "30d_earn_noaddouttoken",
- "30d_earnper_noaddouttoken",
- # "30d_difcost_noaddouttoken",
- # "30d_difearn_noaddouttoken",
- # "30d_difper_noaddouttoken",
- # "30d_costmedian_noaddouttoken",
- # "30d_costmean_noaddouttoken",
- "30d_mine_fir_earnper",
- "30d_mine_fir_earnper_dropmax",
- "30d_mine_fir_earnper_droptwomax",
- "30d_mine_noadd_fir_earnper" ,
- "30d_mine_noadd_fir_earnper_dropmax" ,
- "30d_mine_noadd_fir_earnper_droptwomax" ,
- "30d_trans",
- "30dearn_dif",
- "30d_mine_fir_earnper_dif",
- ]
- earn_kuisun_columns=[
- "add",
- "url",
- "beizhu",
- "03d_bigbig_earn_counts" , "03d_big_earn_counts" , "03d_nor_earn_counts" ,
- "03d_nor_kuisun_counts" , "03d_big_kuisun_counts" , "03d_bigbig_kuisun_counts" ,
- "03d_bigbig_earn_per" , "03d_big_earn_per" , "03d_nor_earn_per" ,
- "03d_nor_kuisun_per" , "03d_big_kuisun_per" , "03d_bigbig_kuisun_per" ,
- "03d_total_counts",
- "07d_bigbig_earn_counts" , "07d_big_earn_counts" , "07d_nor_earn_counts" ,
- "07d_nor_kuisun_counts" , "07d_big_kuisun_counts" , "07d_bigbig_kuisun_counts" ,
- "07d_bigbig_earn_per" , "07d_big_earn_per" , "07d_nor_earn_per" ,
- "07d_nor_kuisun_per" , "07d_big_kuisun_per" , "07d_bigbig_kuisun_per" ,
- "07d_total_counts",
- # "11d_bigbig_earn_counts" , "11d_big_earn_counts" , "11d_nor_earn_counts" ,
- # "11d_nor_kuisun_counts" , "11d_big_kuisun_counts" , "11d_bigbig_kuisun_counts" ,
- # "11d_bigbig_earn_per" , "11d_big_earn_per" , "11d_nor_earn_per" ,
- # "11d_nor_kuisun_per" , "11d_big_kuisun_per" , "11d_bigbig_kuisun_per" ,
- # "11d_total_counts",
- "15d_bigbig_earn_counts" , "15d_big_earn_counts" , "15d_nor_earn_counts" ,
- "15d_nor_kuisun_counts" , "15d_big_kuisun_counts" , "15d_bigbig_kuisun_counts" ,
- "15d_bigbig_earn_per" , "15d_big_earn_per" , "15d_nor_earn_per" ,
- "15d_nor_kuisun_per" , "15d_big_kuisun_per" , "15d_bigbig_kuisun_per" ,
- "15d_total_counts",
- "30d_bigbig_earn_counts" , "30d_big_earn_counts" , "30d_nor_earn_counts" ,
- "30d_nor_kuisun_counts" , "30d_big_kuisun_counts" , "30d_bigbig_kuisun_counts" ,
- "30d_bigbig_earn_per" , "30d_big_earn_per" , "30d_nor_earn_per" ,
- "30d_nor_kuisun_per" , "30d_big_kuisun_per" , "30d_bigbig_kuisun_per" ,
- "30d_total_counts",
- ]
- def get_txhash_tokenswap_amount(df):
- def get_txhash_cost(gdf):
- token_amount_list = gdf['swap_token_amount'].to_list()
- arr_token_amount = [(decimal.Decimal(
- token_amount)) for token_amount in token_amount_list]
- token_amount = sum(arr_token_amount)
- token_amount_str = '{0:.4f}'.format(token_amount)
- gdf[['swap_token_amount']] = [token_amount_str]
- # gdf['swap_token_amount'] = token_amount_str
- return gdf
- df = df.groupby(["sign"], group_keys=False).apply(
- lambda gdf: get_txhash_cost(gdf))
- df = df.reset_index(drop=True)
- return df
- def get_tokenswap_amount(df):
- def get_cost(gdf):
- arr_token_amount = gdf['swap_token_amount'].to_list()
- isfirstsell = False
- while len(arr_token_amount) > 0:
- if (decimal.Decimal(arr_token_amount[0]) < 0):
- arr_token_amount.pop(0)
- isfirstsell = True
- else:
- break
- if len(arr_token_amount) == 0:
- return gdf
- arr_out_token_amount = [abs(decimal.Decimal(
- token_amount)) for token_amount in arr_token_amount if decimal.Decimal(token_amount) < 0]
- arr_in_token_amount = [decimal.Decimal(
- token_amount) for token_amount in arr_token_amount if decimal.Decimal(token_amount) > 0]
- buy_counts = len(arr_in_token_amount)
- sell_counts = len(arr_out_token_amount)
- out_token_amount = sum(arr_out_token_amount)
- in_token_amount = sum(arr_in_token_amount)
- out_token_amount_str = '{0:.2f}'.format(out_token_amount)
- in_token_amount_str = '{0:.2f}'.format(in_token_amount)
- if isfirstsell:
- outtoken_per = "1.01"
- else:
- outtoken_per = '{0:.2f}'.format(
- out_token_amount/in_token_amount) if in_token_amount != 0 else '-10'
- gdf[['buy_counts', 'sell_counts', 'intoken_amount', 'outtoken_amount', 'outtoken_per']] = [buy_counts, sell_counts,
- in_token_amount_str, out_token_amount_str, outtoken_per]
- return gdf
- df[['buy_counts', 'sell_counts', 'intoken_amount',
- 'outtoken_amount', 'outtoken_per']] = [0, 0, '0', '0', '0']
- # 如果全是sell token 那么 在get_cost()将会在中途返回gdf 不会赋值 如上变量全为0
- df = df.groupby(["swap_tokenaddress"], group_keys=False).apply(
- lambda gdf: get_cost(gdf))
- df = df.reset_index(drop=True)
- return df
- def get_sol_profit(df):
- # 計算利潤
- df['cost_main'] = 0
- df['earn_main'] = 0
- df['earn_percent'] = -10
- df['fir_cost_main'] = 0
- df['fir_earn_percent']=-10
- df["issellfir"] = 0
- df["fir_noadd_earn_percent"] = -10
- df["token_price"]=-10
- df["buy_sell_diftime"]=-1
-
- df = df.astype({'swap_eth_amount': float})
- df = df.astype({'swap_token_amount': float})
- df = df.astype({'outtoken_per': float})
- df = df.astype({'timestamp': int})
-
-
- df["token_price"] = np.where(
- df['swap_token_amount'] != 0,
- -df['swap_eth_amount'] / df['swap_token_amount'],
- -10,
- )
-
- def get_one_sol_profit(gdf):
- issellfir = False
- arr_eth_amount = gdf['swap_eth_amount'].to_list()
- arr_token_amount = gdf['swap_token_amount'].to_list()
- arr_timestamp = gdf["timestamp"].to_list()
-
- while len(arr_eth_amount) > 0:
- # 如果 arr_eth_amount[0]>0 则此交易为卖出 pass
- if (arr_eth_amount[0] >= 0):
- gdf["issellfir"] = 1
- arr_eth_amount.pop(0)
- arr_token_amount.pop(0)
- arr_timestamp.pop(0)
- continue
- else:
- break
- if len(arr_eth_amount) == 0:
- return gdf
- number_cost_main = sum(
- [abs(eth_amount) for eth_amount in arr_eth_amount if eth_amount < 0])
- number_earn_main = sum(arr_eth_amount)
- number_earn_percent = number_earn_main / \
- number_cost_main if number_cost_main != 0 else -10
- gdf["cost_main"] = number_cost_main
- gdf["earn_main"] = number_earn_main
- gdf["earn_percent"] = number_earn_percent
- arr_firswap_token_amount = arr_token_amount.copy()
- arr_firswap_eth_amount = arr_eth_amount.copy()
- # swap_tokenaddress
- small_sol_counts = 0
- # 获取第一笔cost_eth
- # 如果 arr_eth_amount[0]>0 则此交易为卖出 pass
- # 如果 0>arr_eth_amount[0]>-0.04 此交易金额较小 pass
- while len(arr_firswap_eth_amount) > 0:
- if arr_firswap_eth_amount[0]>=0:
- arr_firswap_eth_amount.pop(0)
- arr_firswap_token_amount.pop(0)
- arr_timestamp.pop(0)
- continue
- elif arr_firswap_eth_amount[0]<0 and arr_firswap_eth_amount[0]>-0.04:
- arr_firswap_eth_amount.pop(0)
- arr_firswap_token_amount.pop(0)
- arr_timestamp.pop(0)
- small_sol_counts+=1
- if small_sol_counts==2:
- break
- continue
- else :
- break
- if small_sol_counts==2:
- return gdf
- if len(arr_firswap_eth_amount) == 0:
- return gdf
- fir_swap_tokenamount = arr_firswap_token_amount[0]
- fir_swap_costmain = abs(arr_firswap_eth_amount[0])
- fir_swap_earntmain = -fir_swap_costmain
- fir_buy_timestamp =int(arr_timestamp[0])
- fir_sell_timestamp = 0
- while len(arr_firswap_eth_amount) > 0:
- if arr_firswap_eth_amount[0]<=0:
- arr_firswap_eth_amount.pop(0)
- arr_firswap_token_amount.pop(0)
- arr_timestamp.pop(0)
- continue
- # 现在 swap_token 为负 , eth为正 代表 sell token
- cur_swap_tokenamount = abs(arr_firswap_token_amount[0])
- cur_swap_eth = arr_firswap_eth_amount[0]
- fir_sell_timestamp = int(arr_timestamp[0])
- arr_firswap_eth_amount.pop(0)
- arr_firswap_token_amount.pop(0)
- arr_timestamp.pop(0)
- if fir_swap_tokenamount>=cur_swap_tokenamount:
- fir_swap_earntmain+=cur_swap_eth
- fir_swap_tokenamount-=cur_swap_tokenamount
- else:
- fir_swap_earntmain = fir_swap_earntmain+ fir_swap_tokenamount/cur_swap_tokenamount * cur_swap_eth
- fir_swap_tokenamount=0
- if fir_swap_tokenamount==0:
- break
- gdf['fir_cost_main'] = fir_swap_costmain
- gdf["fir_earn_percent"] = fir_swap_earntmain / fir_swap_costmain if fir_swap_costmain != 0 else -10
- gdf["fir_noadd_earn_percent"] = fir_swap_earntmain / fir_swap_costmain if fir_swap_costmain != 0 else -10
- if issellfir==1 or gdf["outtoken_per"].tolist()[0]>1:
- gdf["fir_noadd_earn_percent"] = -10
- gdf["buy_sell_diftime"] = fir_sell_timestamp - fir_buy_timestamp
- return gdf
- df = df.groupby(["swap_tokenaddress"], group_keys=False).apply(
- lambda gdf: get_one_sol_profit(gdf))
- return df
- def analysis_lastdays( df, now_unix_time, intervaldays=30):
- if len(df) == 0:
- return 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0,0
- # need consider df may null if use iloc
- lastdf = df[df["TokenFirstTime"] >=
- now_unix_time - 3600*24*intervaldays]
- # 去除那些earnper为-10的
- lastdf = lastdf[lastdf['cost_main'] != 0]
- # 去除 cost_main 过小的 <0.04 sol 理论上 同时fir_cost_main!=0
- lastdf = lastdf[lastdf['cost_main'] >= 0.04]
- lastdf = lastdf[lastdf['fir_cost_main'] != 0]
- lastdf = lastdf[lastdf['issellfir'] ==0]
- lastdf = lastdf.reset_index(drop=True)
- if len(lastdf) == 0:
- return 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0
- last_mine_fir_earnper = lastdf['fir_earn_percent'].sum()
- last_mine_fir_earnper_dropmax = last_mine_fir_earnper- lastdf['fir_earn_percent'].max()
- last_mine_fir_earnper_droptwomax = last_mine_fir_earnper - sum( lastdf['fir_earn_percent'].nlargest(2).tolist())
- last_cost_sum = lastdf['cost_main'].sum()
- last_earn_sum = lastdf['earn_main'].sum()
- last_cost_median = lastdf['cost_main'].median()
- last_cost_mean = lastdf['cost_main'].mean()
- last_earnper = last_earn_sum / last_cost_sum if last_cost_sum != 0 else -10
- last_trans_amount = len(lastdf)
- lastdf['earn_percent'] = np.where(
- lastdf['cost_main'] != 0,
- lastdf['earn_main'] / lastdf['cost_main'],
- -10,
- )
- earnmain_max = lastdf['earn_main'].max()
- last_earn_difmax_sum = last_earn_sum - earnmain_max
- last_cost_difmax_sum = last_cost_sum - \
- lastdf[lastdf['earn_main'] == earnmain_max]['cost_main'].to_list()[0]
- last_dif_earnper = (
- last_earn_difmax_sum / last_cost_difmax_sum if last_cost_difmax_sum != 0 else -10
- )
- return (
- last_cost_sum,
- last_earn_sum,
- last_earnper,
- last_cost_difmax_sum,
- last_earn_difmax_sum,
- last_dif_earnper,
- last_cost_median,
- last_cost_mean,
- # last_earncount_per,
- last_trans_amount,
- last_mine_fir_earnper,
- last_mine_fir_earnper_dropmax,
- last_mine_fir_earnper_droptwomax,
- )
- def analysis_lastdays_noaddouttoken( df, now_unix_time, intervaldays=30):
- if len(df) == 0:
- return 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0
- # need consider df may null if use iloc
- lastdf = df[df["TokenFirstTime"] >=
- now_unix_time - 3600*24*intervaldays]
- # 去除那些earnper为-10的
- lastdf = lastdf[lastdf['cost_main'] != 0]
- # 去除 cost_main 过小的 <0.04 sol 理论上 同时fir_cost_main!=0
- lastdf = lastdf[lastdf['cost_main'] >= 0.04]
- lastdf = lastdf[lastdf['fir_cost_main'] != 0]
- # fir_noadd_earn_percent
- # 去除 第一笔交易是sell
- lastdf = lastdf[lastdf['fir_noadd_earn_percent'] !=-10]
- lastdf = lastdf[lastdf['issellfir'] ==0]
- lastdf = lastdf.reset_index(drop=True)
- if len(lastdf) == 0:
- return 0, 0, 0, 0, 0, 0, 0, 0, 0,0,0,0
-
- last_mine_noadd_fir_earnper = lastdf['fir_noadd_earn_percent'].sum()
- last_mine_noadd_fir_earnper_dropmax = last_mine_noadd_fir_earnper- lastdf['fir_noadd_earn_percent'].max()
- last_mine_noadd_fir_earnper_droptwomax = last_mine_noadd_fir_earnper - sum( lastdf['fir_noadd_earn_percent'].nlargest(2).tolist())
- last_cost_sum = lastdf['cost_main'].sum()
- last_earn_sum = lastdf['earn_main'].sum()
- # last_earn_sum = lastdf["earn_main_noaddouttoken"].sum()
- last_cost_median = lastdf['cost_main'].median()
- last_cost_mean = lastdf['cost_main'].mean()
- last_earnper = last_earn_sum / last_cost_sum if last_cost_sum != 0 else -10
- last_trans_amount = len(lastdf)
- lastdf['earn_percent'] = np.where(
- lastdf['cost_main'] != 0,
- lastdf["earn_main"] / lastdf['cost_main'],
- -10,
- )
- earnmain_max = lastdf["earn_main"].max()
- last_earn_difmax_sum = last_earn_sum - earnmain_max
- last_cost_difmax_sum = last_cost_sum - \
- lastdf[lastdf['earn_main'] == earnmain_max]['cost_main'].to_list()[
- 0]
- last_dif_earnper = (
- last_earn_difmax_sum / last_cost_difmax_sum if last_cost_difmax_sum != 0 else -10
- )
- return (
- last_cost_sum,
- last_earn_sum,
- last_earnper,
- last_cost_difmax_sum,
- last_earn_difmax_sum,
- last_dif_earnper,
- last_cost_median,
- last_cost_mean,
- # last_earncount_per,
- last_trans_amount,
- last_mine_noadd_fir_earnper ,
- last_mine_noadd_fir_earnper_dropmax ,
- last_mine_noadd_fir_earnper_droptwomax
- )
- def analysis_lastdays_earn_kuisun_counts(df ,now_unix_time,intervaldays ):
- if len(df) == 0:
- return 0, 0, 0, 0, 0, 0, 0 ,0,0,0,0,0,0
- # need consider df may null if use iloc
- lastdf = df[df["TokenFirstTime"] >=
- now_unix_time - 3600*24*intervaldays]
- # 去除那些earnper为-10的
- lastdf = lastdf[lastdf['cost_main'] != 0]
- # 去除 cost_main 过小的 <0.04 sol 理论上 同时fir_cost_main!=0
- lastdf = lastdf[lastdf['cost_main'] >= 0.04]
- lastdf = lastdf[lastdf['fir_cost_main'] != 0]
- # fir_noadd_earn_percent
- # 去除 第一笔交易是sell
- lastdf = lastdf[lastdf['fir_noadd_earn_percent'] !=-10]
- lastdf = lastdf[lastdf['issellfir'] ==0]
- lastdf = lastdf.reset_index(drop=True)
- if len(lastdf) == 0:
- return 0, 0, 0, 0, 0, 0, 0 ,0,0,0,0,0,0
-
- last_bigbig_earn_counts = len( lastdf[lastdf['fir_noadd_earn_percent']>=1])
- last_big_earn_counts = len( lastdf[(lastdf['fir_noadd_earn_percent']>=0.5 )& (lastdf['fir_noadd_earn_percent']<1 ) ])
- last_nor_earn_counts = len( lastdf[(lastdf['fir_noadd_earn_percent']>=0.05 )& (lastdf['fir_noadd_earn_percent']<0.5 ) ])
- last_nor_kuisun_counts = len( lastdf[(lastdf['fir_noadd_earn_percent']>=-0.2 )& (lastdf['fir_noadd_earn_percent']<0.05 ) ])
- last_big_kuisun_counts = len( lastdf[(lastdf['fir_noadd_earn_percent']>=-0.5 )& (lastdf['fir_noadd_earn_percent']<-0.2 ) ])
- last_bigbig_kuisun_counts = len( lastdf[ (lastdf['fir_noadd_earn_percent']<-0.5 ) ])
- last_total_counts = len( lastdf)
- last_bigbig_earn_per = last_bigbig_earn_counts /last_total_counts if last_total_counts!=0 else -10
- last_big_earn_per = last_big_earn_counts / last_total_counts if last_total_counts!=0 else -10
- last_nor_earn_per = last_nor_earn_counts / last_total_counts if last_total_counts!=0 else -10
- last_nor_kuisun_per = last_nor_kuisun_counts /last_total_counts if last_total_counts!=0 else -10
- last_big_kuisun_per= last_big_kuisun_counts / last_total_counts if last_total_counts!=0 else -10
- last_bigbig_kuisun_per = last_bigbig_kuisun_counts / last_total_counts if last_total_counts!=0 else -10
- return (
- last_bigbig_earn_counts,
- last_big_earn_counts,
- last_nor_earn_counts,
- last_nor_kuisun_counts,
- last_big_kuisun_counts,
- last_bigbig_kuisun_counts,
- last_total_counts,
- last_bigbig_earn_per ,
- last_big_earn_per ,
- last_nor_earn_per ,
- last_nor_kuisun_per ,
- last_big_kuisun_per,
- last_bigbig_kuisun_per ,
- )
-
- return
- def get_analyres(df, dalao_address, now_unix_time):
- (last_03d_cost, last_03d_earn, last_03d_earnper, last_03d_difcost, last_03d_difearn, last_03d_difper, last_03d_costmedian, last_03d_costmean, last_03d_trans , last_03d_mine_fir_earnper ,last_03d_mine_fir_earnper_dropmax, last_03d_mine_fir_earnper_droptwomax ) = analysis_lastdays(
- df, now_unix_time=now_unix_time, intervaldays=3
- )
- (last_07d_cost, last_07d_earn, last_07d_earnper, last_07d_difcost, last_07d_difearn, last_07d_difper, last_07d_costmedian, last_07d_costmean, last_07d_trans , last_07d_mine_fir_earnper ,last_07d_mine_fir_earnper_dropmax, last_07d_mine_fir_earnper_droptwomax ) = analysis_lastdays(
- df, now_unix_time=now_unix_time, intervaldays=7
- )
- # (last_11d_cost, last_11d_earn, last_11d_earnper, last_11d_difcost, last_11d_difearn, last_11d_difper, last_11d_costmedian, last_11d_costmean, last_11d_trans , last_11d_mine_fir_earnper ,last_11d_mine_fir_earnper_dropmax , last_11d_mine_fir_earnper_droptwomax ) = analysis_lastdays(
- # df, now_unix_time=now_unix_time, intervaldays=11
- # )
- (last_15d_cost, last_15d_earn, last_15d_earnper, last_15d_difcost, last_15d_difearn, last_15d_difper, last_15d_costmedian, last_15d_costmean, last_15d_trans , last_15d_mine_fir_earnper ,last_15d_mine_fir_earnper_dropmax , last_15d_mine_fir_earnper_droptwomax ) = analysis_lastdays(
- df, now_unix_time=now_unix_time, intervaldays=15
- )
- (last_30d_cost, last_30d_earn, last_30d_earnper, last_30d_difcost, last_30d_difearn, last_30d_difper, last_30d_costmedian, last_30d_costmean, last_30d_trans , last_30d_mine_fir_earnper ,last_30d_mine_fir_earnper_dropmax , last_30d_mine_fir_earnper_droptwomax ) = analysis_lastdays(
- df, now_unix_time=now_unix_time, intervaldays=30
- )
-
- # # 去除所有daxin
- # df = df[df["isdaxin"] == "0"].reset_index(drop=True)
- (last_03d_cost_noaddouttoken, last_03d_earn_noaddouttoken, last_03d_earnper_noaddouttoken, last_03d_difcost_noaddouttoken, last_03d_difearn_noaddouttoken, last_03d_difper_noaddouttoken, last_03d_costmedian_noaddouttoken, last_03d_costmean_noaddouttoken, last_03d_trans ,
- last_03d_mine_noadd_fir_earnper , last_03d_mine_noadd_fir_earnper_dropmax , last_03d_mine_noadd_fir_earnper_droptwomax ) = analysis_lastdays_noaddouttoken(
- df, now_unix_time=now_unix_time, intervaldays=3
- )
- (last_07d_cost_noaddouttoken, last_07d_earn_noaddouttoken, last_07d_earnper_noaddouttoken, last_07d_difcost_noaddouttoken, last_07d_difearn_noaddouttoken, last_07d_difper_noaddouttoken, last_07d_costmedian_noaddouttoken, last_07d_costmean_noaddouttoken, last_07d_trans,
- last_07d_mine_noadd_fir_earnper , last_07d_mine_noadd_fir_earnper_dropmax , last_07d_mine_noadd_fir_earnper_droptwomax) = analysis_lastdays_noaddouttoken(
- df, now_unix_time=now_unix_time, intervaldays=7
- )
- # (last_11d_cost_noaddouttoken, last_11d_earn_noaddouttoken, last_11d_earnper_noaddouttoken, last_11d_difcost_noaddouttoken, last_11d_difearn_noaddouttoken, last_11d_difper_noaddouttoken, last_11d_costmedian_noaddouttoken, last_11d_costmean_noaddouttoken, last_11d_trans,
- # last_11d_mine_noadd_fir_earnper , last_11d_mine_noadd_fir_earnper_dropmax , last_11d_mine_noadd_fir_earnper_droptwomax) = analysis_lastdays_noaddouttoken(
- # df, now_unix_time=now_unix_time, intervaldays=11
- # )
- (last_15d_cost_noaddouttoken, last_15d_earn_noaddouttoken, last_15d_earnper_noaddouttoken, last_15d_difcost_noaddouttoken, last_15d_difearn_noaddouttoken, last_15d_difper_noaddouttoken, last_15d_costmedian_noaddouttoken, last_15d_costmean_noaddouttoken, last_15d_trans,
- last_15d_mine_noadd_fir_earnper , last_15d_mine_noadd_fir_earnper_dropmax , last_15d_mine_noadd_fir_earnper_droptwomax) = analysis_lastdays_noaddouttoken(
- df, now_unix_time=now_unix_time, intervaldays=15
- )
- (last_30d_cost_noaddouttoken, last_30d_earn_noaddouttoken, last_30d_earnper_noaddouttoken, last_30d_difcost_noaddouttoken, last_30d_difearn_noaddouttoken, last_30d_difper_noaddouttoken, last_30d_costmedian_noaddouttoken, last_30d_costmean_noaddouttoken, last_30d_trans,
- last_30d_mine_noadd_fir_earnper , last_30d_mine_noadd_fir_earnper_dropmax , last_30d_mine_noadd_fir_earnper_droptwomax) = analysis_lastdays_noaddouttoken(
- df, now_unix_time=now_unix_time, intervaldays=30
- )
- (last_03d_bigbig_earn_counts, last_03d_big_earn_counts, last_03d_nor_earn_counts, last_03d_nor_kuisun_counts,last_03d_big_kuisun_counts,last_03d_bigbig_kuisun_counts ,last_03d_total_counts,
- last_03d_bigbig_earn_per , last_03d_big_earn_per , last_03d_nor_earn_per , last_03d_nor_kuisun_per , last_03d_big_kuisun_per, last_03d_bigbig_kuisun_per
- ) = analysis_lastdays_earn_kuisun_counts(
- df, now_unix_time=now_unix_time, intervaldays=3
- )
- (last_07d_bigbig_earn_counts, last_07d_big_earn_counts, last_07d_nor_earn_counts, last_07d_nor_kuisun_counts,last_07d_big_kuisun_counts,last_07d_bigbig_kuisun_counts ,last_07d_total_counts,
- last_07d_bigbig_earn_per , last_07d_big_earn_per , last_07d_nor_earn_per , last_07d_nor_kuisun_per , last_07d_big_kuisun_per, last_07d_bigbig_kuisun_per
- ) = analysis_lastdays_earn_kuisun_counts(
- df, now_unix_time=now_unix_time, intervaldays=7
- )
- # (last_11d_bigbig_earn_counts, last_11d_big_earn_counts, last_11d_nor_earn_counts, last_11d_nor_kuisun_counts,last_11d_big_kuisun_counts,last_11d_bigbig_kuisun_counts ,last_11d_total_counts,
- # last_11d_bigbig_earn_per , last_11d_big_earn_per , last_11d_nor_earn_per , last_11d_nor_kuisun_per , last_11d_big_kuisun_per, last_11d_bigbig_kuisun_per
- # ) = analysis_lastdays_earn_kuisun_counts(
- # df, now_unix_time=now_unix_time, intervaldays=11
- # )
- (last_15d_bigbig_earn_counts, last_15d_big_earn_counts, last_15d_nor_earn_counts, last_15d_nor_kuisun_counts,last_15d_big_kuisun_counts,last_15d_bigbig_kuisun_counts ,last_15d_total_counts,
- last_15d_bigbig_earn_per , last_15d_big_earn_per , last_15d_nor_earn_per , last_15d_nor_kuisun_per , last_15d_big_kuisun_per, last_15d_bigbig_kuisun_per
- ) = analysis_lastdays_earn_kuisun_counts(
- df, now_unix_time=now_unix_time, intervaldays=15
- )
- (last_30d_bigbig_earn_counts, last_30d_big_earn_counts, last_30d_nor_earn_counts, last_30d_nor_kuisun_counts,last_30d_big_kuisun_counts,last_30d_bigbig_kuisun_counts ,last_30d_total_counts,
- last_30d_bigbig_earn_per , last_30d_big_earn_per , last_30d_nor_earn_per , last_30d_nor_kuisun_per , last_30d_big_kuisun_per, last_30d_bigbig_kuisun_per
- ) = analysis_lastdays_earn_kuisun_counts(
- df, now_unix_time=now_unix_time, intervaldays=30
- )
- dalao_rul = f"https://solscan.io/account/{dalao_address}"
-
- analist = [
- dalao_address,
- dalao_rul,
- "",
- last_03d_cost,
- last_03d_earn,
- last_03d_earnper,
- last_03d_difcost,
- last_03d_difearn,
- last_03d_difper,
- last_03d_costmedian,
- last_03d_costmean,
- last_03d_cost_noaddouttoken,
- last_03d_earn_noaddouttoken,
- last_03d_earnper_noaddouttoken,
- # last_03d_difcost_noaddouttoken,
- # last_03d_difearn_noaddouttoken,
- # last_03d_difper_noaddouttoken,
- # last_03d_costmedian_noaddouttoken,
- # last_03d_costmean_noaddouttoken,
- last_03d_mine_fir_earnper,
- last_03d_mine_fir_earnper_dropmax,
- last_03d_mine_fir_earnper_droptwomax,
- last_03d_mine_noadd_fir_earnper ,
- last_03d_mine_noadd_fir_earnper_dropmax ,
- last_03d_mine_noadd_fir_earnper_droptwomax,
- last_03d_trans,
- last_07d_cost,
- last_07d_earn,
- last_07d_earnper,
- last_07d_difcost,
- last_07d_difearn,
- last_07d_difper,
- last_07d_costmedian,
- last_07d_costmean,
- last_07d_cost_noaddouttoken,
- last_07d_earn_noaddouttoken,
- last_07d_earnper_noaddouttoken,
- # last_07d_difcost_noaddouttoken,
- # last_07d_difearn_noaddouttoken,
- # last_07d_difper_noaddouttoken,
- # last_07d_costmedian_noaddouttoken,
- # last_07d_costmean_noaddouttoken,
- last_07d_mine_fir_earnper,
- last_07d_mine_fir_earnper_dropmax,
- last_07d_mine_fir_earnper_droptwomax,
- last_07d_mine_noadd_fir_earnper ,
- last_07d_mine_noadd_fir_earnper_dropmax ,
- last_07d_mine_noadd_fir_earnper_droptwomax,
- last_07d_trans,
- # last_11d_cost,
- # last_11d_earn,
- # last_11d_earnper,
- # last_11d_difcost,
- # last_11d_difearn,
- # last_11d_difper,
- # last_11d_costmedian,
- # last_11d_costmean,
- # last_11d_cost_noaddouttoken,
- # last_11d_earn_noaddouttoken,
- # last_11d_earnper_noaddouttoken,
- # # last_11d_difcost_noaddouttoken,
- # # last_11d_difearn_noaddouttoken,
- # # last_11d_difper_noaddouttoken,
- # # last_11d_costmedian_noaddouttoken,
- # # last_11d_costmean_noaddouttoken,
- # last_11d_mine_fir_earnper,
- # last_11d_mine_fir_earnper_dropmax,
- # last_11d_mine_fir_earnper_droptwomax,
- # last_11d_mine_noadd_fir_earnper ,
- # last_11d_mine_noadd_fir_earnper_dropmax ,
- # last_11d_mine_noadd_fir_earnper_droptwomax ,
- # last_11d_trans,
- last_15d_cost,
- last_15d_earn,
- last_15d_earnper,
- last_15d_difcost,
- last_15d_difearn,
- last_15d_difper,
- last_15d_costmedian,
- last_15d_costmean,
- last_15d_cost_noaddouttoken,
- last_15d_earn_noaddouttoken,
- last_15d_earnper_noaddouttoken,
- # last_15d_difcost_noaddouttoken,
- # last_15d_difearn_noaddouttoken,
- # last_15d_difper_noaddouttoken,
- # last_15d_costmedian_noaddouttoken,
- # last_15d_costmean_noaddouttoken,
- last_15d_mine_fir_earnper,
- last_15d_mine_fir_earnper_dropmax,
- last_15d_mine_fir_earnper_droptwomax,
- last_15d_mine_noadd_fir_earnper ,
- last_15d_mine_noadd_fir_earnper_dropmax ,
- last_15d_mine_noadd_fir_earnper_droptwomax,
- last_15d_trans,
- last_30d_cost,
- last_30d_earn,
- last_30d_earnper,
- last_30d_difcost,
- last_30d_difearn,
- last_30d_difper,
- last_30d_costmedian,
- last_30d_costmean,
- last_30d_cost_noaddouttoken,
- last_30d_earn_noaddouttoken,
- last_30d_earnper_noaddouttoken,
- # last_30d_difcost_noaddouttoken,
- # last_30d_difearn_noaddouttoken,
- # last_30d_difper_noaddouttoken,
- # last_30d_costmedian_noaddouttoken,
- # last_30d_costmean_noaddouttoken,
- last_30d_mine_fir_earnper,
- last_30d_mine_fir_earnper_dropmax,
- last_30d_mine_fir_earnper_droptwomax,
- last_30d_mine_noadd_fir_earnper ,
- last_30d_mine_noadd_fir_earnper_dropmax ,
- last_30d_mine_noadd_fir_earnper_droptwomax ,
- last_30d_trans,
- last_30d_earn-last_30d_earn_noaddouttoken,
- last_30d_mine_fir_earnper - last_30d_mine_noadd_fir_earnper,
- ]
- arr_earn_kuisun_counts=[
- dalao_address,
- dalao_rul,
- "",
- last_03d_bigbig_earn_counts, last_03d_big_earn_counts, last_03d_nor_earn_counts,
- last_03d_nor_kuisun_counts,last_03d_big_kuisun_counts,last_03d_bigbig_kuisun_counts ,
- last_03d_bigbig_earn_per, last_03d_big_earn_per , last_03d_nor_earn_per ,
- last_03d_nor_kuisun_per , last_03d_big_kuisun_per, last_03d_bigbig_kuisun_per,
- last_03d_total_counts ,
- last_07d_bigbig_earn_counts, last_07d_big_earn_counts, last_07d_nor_earn_counts,
- last_07d_nor_kuisun_counts,last_07d_big_kuisun_counts,last_07d_bigbig_kuisun_counts ,
- last_07d_bigbig_earn_per , last_07d_big_earn_per , last_07d_nor_earn_per ,
- last_07d_nor_kuisun_per , last_07d_big_kuisun_per, last_07d_bigbig_kuisun_per,
- last_07d_total_counts ,
- # last_11d_bigbig_earn_counts, last_11d_big_earn_counts, last_11d_nor_earn_counts,
- # last_11d_nor_kuisun_counts,last_11d_big_kuisun_counts,last_11d_bigbig_kuisun_counts ,
- # last_11d_bigbig_earn_per , last_11d_big_earn_per , last_11d_nor_earn_per ,
- # last_11d_nor_kuisun_per , last_11d_big_kuisun_per, last_11d_bigbig_kuisun_per,
-
- # last_11d_total_counts ,
- last_15d_bigbig_earn_counts, last_15d_big_earn_counts, last_15d_nor_earn_counts,
- last_15d_nor_kuisun_counts,last_15d_big_kuisun_counts,last_15d_bigbig_kuisun_counts ,
- last_15d_bigbig_earn_per , last_15d_big_earn_per , last_15d_nor_earn_per ,
- last_15d_nor_kuisun_per , last_15d_big_kuisun_per, last_15d_bigbig_kuisun_per,
- last_15d_total_counts ,
-
- last_30d_bigbig_earn_counts, last_30d_big_earn_counts, last_30d_nor_earn_counts,
- last_30d_nor_kuisun_counts,last_30d_big_kuisun_counts,last_30d_bigbig_kuisun_counts ,
- last_30d_bigbig_earn_per , last_30d_big_earn_per , last_30d_nor_earn_per ,
- last_30d_nor_kuisun_per , last_30d_big_kuisun_per, last_30d_bigbig_kuisun_per,
-
- last_30d_total_counts ,
- ]
- global TotalAnalysis_list
- global total_arr_earn_kuisun
- TotalAnalysis_list.append(analist)
- total_arr_earn_kuisun.append(arr_earn_kuisun_counts)
- def calute_days(df, now_unix_time):
- df["diffdays"] = 0
- # intervaldays_list = [15, 11, 7, 3]
- intervaldays_list = [30, 15, 7, 3]
- for intervaldays in intervaldays_list:
- df.loc[df["TokenFirstTime"] >=
- now_unix_time - 3600*24*intervaldays, "diffdays"] = intervaldays
- return df
- def calucate_earnmain_dropoutoken(row):
- earnmain_amount_dropoutoken = decimal.Decimal(row['earn_main'])
- outtoken_per = decimal.Decimal(row["outtoken_per"])
- issellfir = row["issellfir"]
- # if outtoken_per >= 1.1 or outtoken_per == -10
- if outtoken_per > 1 or issellfir==0:
- earnmain_amount_dropoutoken = decimal.Decimal(0)
- earnmain_amount_dropoutoken_str = '{0:.4f}'.format(
- earnmain_amount_dropoutoken)
- return float(earnmain_amount_dropoutoken_str)
- def makeDexurl(row, dalao_address):
- tokenAddress = row['swap_tokenaddress']
- urlname = f"https://dexscreener.com/solana/{tokenAddress}?maker={dalao_address}"
- return '=HYPERLINK("{}","{}")'.format(urlname, "DEX/"+tokenAddress)
- def get_ana_df(dalao_address, df, success_address_list, onetxhash_onerow_ana_df):
- onedalao_ana_df = df[onedalao_ana_columns].drop_duplicates(
- ).reset_index(drop=True)
- onedalao_ana_df.insert(
- loc=2, column="swap_tokenadd_dexurl", value="")
- onedalao_ana_df['swap_tokenadd_dexurl'] = onedalao_ana_df.apply(
- lambda row: makeDexurl(row, dalao_address), axis=1)
- onedalao_ana_df["FirstDateTime"] = pd.to_datetime(
- onedalao_ana_df['TokenFirstTime'], unit='s')
- # 如果outoken超了,earn_main_noaddouttoken 的值有两种处理方式
- # 一种设置为0 即为不亏不赚
- # 一种为全负 即为全亏了
- # onedalao_ana_df["earn_main_noaddouttoken"] = onedalao_ana_df.apply(
- # lambda row: calucate_earnmain_dropoutoken(row), axis=1)
- get_analyres(df=onedalao_ana_df, dalao_address=dalao_address,
- now_unix_time=now_unix_time)
- onedalao_ana_df = calute_days(
- df=onedalao_ana_df, now_unix_time=now_unix_time)
- handle_onedalao_ana_df = onedalao_ana_df[onedalao_ana_df['cost_main'] != 0].reset_index(
- drop=True)
- baseclass.makedirpath(baseclass.dalao_ana_fm_path / dalao_address)
- onedalao_ana_df.to_csv(baseclass.dalao_ana_fm_path /
- dalao_address/f"analysisprofit_{dalao_address}.csv", index=False)
- handle_onedalao_ana_df.to_csv(baseclass.dalao_ana_fm_path /
- dalao_address/f"analysisprofit_handle_{dalao_address}.csv", index=False)
- onetxhash_onerow_ana_df.to_csv(baseclass.dalao_ana_fm_path /
- dalao_address/f"onetxhash_onerow_profit_{dalao_address}.csv", index=False)
- success_address_list.remove(dalao_address)
- def get_profit_st(str_dalao_address):
- if not (baseclass.dalao_configtoken_st_solanafm_path /
- f"configtoken_{str_dalao_address}.csv").exists():
- return None
- # print(f"enter get_profit_st dalao_address= {str_dalao_address} \n", end='')
- df = pd.read_csv(baseclass.dalao_configtoken_st_solanafm_path /
- f"configtoken_{str_dalao_address}.csv", dtype=object)
- # timestamp sign source destination token amount swap_tokenadd swap_eth_amount swap_token_amount token_idx dalaofirsttimestamp
- df["timestamp"] = df["timestamp"].astype(int)
- df['dalaofirsttimestamp'] = pd.to_datetime(
- df['dalaofirsttimestamp'] )
- df["dexurl"] = df.apply(lambda ser: (f'https://dexscreener.com/solana/{ser["swap_tokenaddress"]}?maker={str_dalao_address}' ), axis=1)
- df["TokenFirstTime"] = df.groupby("token_idx")[
- "timestamp"].transform("min")
- df = calute_days(
- df=df, now_unix_time=now_unix_time)
- df = df.sort_values(by=["dalaofirsttimestamp", 'swap_tokenaddress', 'timestamp'], ascending=[
- False, True, True]).reset_index(drop=True)
- onetxhash_onerow_ana_df = df.copy()
- onetxhash_onerow_ana_df = onetxhash_onerow_ana_df[["timestamp", "TokenFirstTime",
- "sign", "swap_tokenaddress","dexurl","platform","swap_type",
- "swap_eth_amount", "swap_token_amount",
- "dalaofirsttimestamp","diffdays"]]
- onetxhash_onerow_ana_df = onetxhash_onerow_ana_df.astype(
- {'swap_eth_amount': float})
- # 计算一个txhash的 tokenamount swap 数目
- onetxhash_onerow_ana_df = get_txhash_tokenswap_amount(
- df=onetxhash_onerow_ana_df)
- # 计算一个txhash的sol swap 数目
- earnMain_df = (
- onetxhash_onerow_ana_df
- .groupby('sign')["swap_eth_amount"]
- .sum()
- )
- onetxhash_onerow_ana_df['swap_eth_amount'] = onetxhash_onerow_ana_df["sign"].map(
- earnMain_df)
- onetxhash_onerow_ana_df = onetxhash_onerow_ana_df.drop_duplicates().reset_index(drop=True)
- onetxhash_onerow_ana_df = get_tokenswap_amount(df=onetxhash_onerow_ana_df)
- onetxhash_onerow_ana_df = onetxhash_onerow_ana_df.sort_values(by=["dalaofirsttimestamp", 'swap_tokenaddress', 'timestamp'], ascending=[
- False, True, True]).reset_index(drop=True)
- onetxhash_onerow_ana_df = get_sol_profit(df=onetxhash_onerow_ana_df)
- onetxhash_onerow_ana_df["datetime"] = pd.to_datetime(
- onetxhash_onerow_ana_df["timestamp"], unit='s')
- onetxhash_onerow_ana_df=onetxhash_onerow_ana_df[onetxhash_onerow_ana_cols]
- onetxhash_onerow_ana_df.to_csv(
- baseclass.dalao_profit_st_fm_path / f"onetxhash_onerow_profit_{str_dalao_address}.csv", index=False)
- # onetxhash_onerow_ana_df=pd.DataFrame()
- def set_platform(gdf):
- if "unknown" in gdf["platform"]:
- gdf["platform"] = "unknown"
- print("unknow in plat")
- return gdf
-
- onetxhash_onerow_ana_df.groupby(by=["swap_tokenaddress"]).apply(lambda gdf : set_platform(gdf))
- onetxhash_onerow_ana_dropdup_df = onetxhash_onerow_ana_df.drop_duplicates(subset=["swap_tokenaddress"]).reset_index(drop=True)
-
- onetxhash_onerow_ana_dropdup_df.to_csv(
- baseclass.dalao_profit_st_fm_path / f"onetxhash_onerow_profit_dropdup_{str_dalao_address}.csv", index=False)
-
- return onetxhash_onerow_ana_df
- def get_dalaoaddress_list():
- df = pd.read_csv(baseclass.dalao_merge_path /
- "filter_dalao.csv", dtype=object)
- arr_dalao_address = df["dalaoAddress"].tolist()
- return arr_dalao_address
- def save_earn_kuisun_df():
-
- global total_arr_earn_kuisun
- totalana_earn_kuisun_df = pd.DataFrame(
- data=total_arr_earn_kuisun, columns=earn_kuisun_columns
- )
- totalana_earn_kuisun_df = totalana_earn_kuisun_df.round(4)
- totalana_earn_kuisun_df = totalana_earn_kuisun_df.sort_values(by=["add"], ascending=[
- True]).reset_index(drop=True)
- totalana_earn_kuisun_df.to_excel(
- baseclass.dalao_total_ana_fm_path/f"totalana_earn_kuisun_df.xlsx", index=False)
-
- return
- def save_total_ana_df():
- global TotalAnalysis_list
- TotalAnalysis_df = pd.DataFrame(
- data=TotalAnalysis_list, columns=TotalAnalysis_columns
- )
- TotalAnalysis_df = TotalAnalysis_df.round(4)
- TotalAnalysis_df = TotalAnalysis_df.sort_values(by=["add"], ascending=[
- True]).reset_index(drop=True)
-
- TotalAnalysis_df.to_csv(
- baseclass.dalao_total_ana_fm_path/f"totalana.csv", index=False)
- TotalAnalysis_df.to_excel(
- baseclass.dalao_total_ana_fm_path/f"totalana.xlsx", index=False)
- # mine_fir_earnper_filter_mask = (
- # (TotalAnalysis_df["15d_mine_fir_earnper"] >=
- # 0.8*TotalAnalysis_df["11d_mine_fir_earnper"])
- # & (TotalAnalysis_df["11d_mine_fir_earnper"] >= 0.8*TotalAnalysis_df["07d_mine_fir_earnper"])
- # )
- # mine_fir_earnper_dropmax_filter_mask = (
- # (TotalAnalysis_df["15d_mine_fir_earnper_dropmax"] >=
- # 0.8*TotalAnalysis_df["11d_mine_fir_earnper_dropmax"])
- # & (TotalAnalysis_df["11d_mine_fir_earnper_dropmax"] >= 0.8*TotalAnalysis_df["07d_mine_fir_earnper_dropmax"])
- # )
-
- mine_noadd_fir_earnper_filter_mask = (
- (TotalAnalysis_df["30d_mine_noadd_fir_earnper"] >=
- 0.8*TotalAnalysis_df["15d_mine_noadd_fir_earnper"])
- & (TotalAnalysis_df["15d_mine_noadd_fir_earnper"] >= 0.8*TotalAnalysis_df["07d_mine_noadd_fir_earnper"])
- )
-
- mine_noadd_fir_earnper_dropmax_filter_mask = (
- (TotalAnalysis_df["30d_mine_noadd_fir_earnper_dropmax"] >=
- 0.8*TotalAnalysis_df["15d_mine_noadd_fir_earnper_dropmax"])
- & (TotalAnalysis_df["15d_mine_noadd_fir_earnper_dropmax"] >= 0.8*TotalAnalysis_df["07d_mine_noadd_fir_earnper_dropmax"])
- )
- filter_mask = (
- # mine_fir_earnper_filter_mask
- # | mine_fir_earnper_dropmax_filter_mask
- mine_noadd_fir_earnper_filter_mask
- | mine_noadd_fir_earnper_dropmax_filter_mask
- )
- increase_TotalAnalysis_df = TotalAnalysis_df[filter_mask].reset_index(
- drop=True)
- increase_TotalAnalysis_df.to_excel(
- baseclass.dalao_total_ana_fm_path/f"increase_totalana.xlsx", index=False)
- # last_07d_has_mask = (increase_TotalAnalysis_df["07d_trans"]== increase_TotalAnalysis_df["11d_trans"])
- # last_07d_increase_TotalAnalysis_df = increase_TotalAnalysis_df[last_07d_has_mask]
- increase_TotalAnalysis_df.to_excel(
- baseclass.dalao_total_ana_fm_path/f"increase_totalana_07d.xlsx", index=False)
- def get_mul_profit_st():
- global arr_str_dalaoaddress
- success_address_list = arr_str_dalaoaddress.copy()
- for idx in range(0, len(arr_str_dalaoaddress), batchSize):
- thread_list = []
- for cur_idx in range(idx, min(idx+batchSize, len(arr_str_dalaoaddress))):
- thread = threading.Thread(
- target=get_one_profit_st,
- args=(arr_str_dalaoaddress[cur_idx],
- success_address_list, cur_idx)
- )
- thread_list.append(thread)
- for thread in thread_list:
- thread.start()
- for thread in thread_list:
- thread.join()
- def get_one_profit_st(dalao_address, success_address_list, cur_idx):
- try:
- df = None
- onetxhash_onerow_ana_df = None
- print(f"get_one_profit_st cur_idx={cur_idx} dalao_address={dalao_address}\n", end='')
- onetxhash_onerow_ana_df = get_profit_st(
- str_dalao_address=dalao_address)
- if onetxhash_onerow_ana_df is None:
- print(f"get_one_profit_st cur_idx={cur_idx} is None \n", end='')
- return
- get_ana_df(dalao_address=dalao_address, df=onetxhash_onerow_ana_df,
- success_address_list=success_address_list, onetxhash_onerow_ana_df=onetxhash_onerow_ana_df)
- print(f"cur_idx={cur_idx} end \n", end='')
- return
- except Exception as e:
- print(f"error_dalao_address={dalao_address}")
- raise
- batchSize = 5
- TotalAnalysis_list = []
- total_arr_earn_kuisun =[]
- now_unix_time = int(time.time())
- arr_str_dalaoaddress = get_dalaoaddress_list()
- arr_str_dalaoaddress = arr_str_dalaoaddress[0:450]
- arr_str_dalaoaddress.append(baseclass.mywalletaddress)
- # arr_str_dalaoaddress = ['H5P5xig8WjcDQrzyR4HaKcrg4hd2vh5DLPnFs4ypNE1X']
- print(f"arr_str_dalaoaddress len= {len(arr_str_dalaoaddress)}")
- get_mul_profit_st()
- save_total_ana_df()
- save_earn_kuisun_df()
- print(f"arr_str_dalaoaddress len= {len(arr_str_dalaoaddress)} \n", end='')
- print(f"{'{:<6}'.format('END')} {baseclass.scriptfilename} ----------------NOTE-----------NOTE---------------")
|