Browse Source

(modify):修改分析 将-30%为界换为-50

windowdog 5 months ago
parent
commit
b0fc6f27b9

+ 31 - 32
src/code/018_analysis_dalao_pnl_gmgn.py

@@ -50,8 +50,8 @@ def get_ana_data_lastdays( df,    intervaldays=30):
         lastdf['profit_eth'] / lastdf['buy_eth'],
         -10,
     )
-    earn_per_neg100_neg30 = len( lastdf[ (lastdf["earn_percent"] >=-1) & (lastdf["earn_percent"] <=-0.3 )] )
-    earn_per_neg30_pos0 = len( lastdf[ (lastdf["earn_percent"] >-0.3 )& (lastdf["earn_percent"] <=0)  ] )
+    earn_per_neg100_neg50 = len( lastdf[ (lastdf["earn_percent"] >=-1) & (lastdf["earn_percent"] <=-0.5 )] )
+    earn_per_neg50_pos0 = len( lastdf[ (lastdf["earn_percent"] >-0.5)& (lastdf["earn_percent"] <=0)  ] )
     earn_per_pos0_pos100 = len( lastdf[( lastdf["earn_percent"] >0) & (lastdf["earn_percent"] <=1 )  ] )
     earn_per_pos100_posmax = len( lastdf[ lastdf["earn_percent"] >1 ] )
     
@@ -77,8 +77,8 @@ def get_ana_data_lastdays( df,    intervaldays=30):
         _cost_median,
         _cost_mean,
         _trans_amount,
-        earn_per_neg100_neg30,
-        earn_per_neg30_pos0,
+        earn_per_neg100_neg50,
+        earn_per_neg50_pos0,
         earn_per_pos0_pos100,
         earn_per_pos100_posmax,
         earn_per_pos400_posmax,
@@ -140,21 +140,21 @@ def main():
             continue
         
         (_07d_cost, _07d_earn, _07d_earnper, _07d_difcost, _07d_difearn, _07d_difper, 
-        _07d_costmedian, _07d_costmean,    _07d_trans ,    _07d_earn_per_neg100_neg30,
-        _07d_earn_per_neg30_pos0,        _07d_earn_per_pos0_pos100,     
+        _07d_costmedian, _07d_costmean,    _07d_trans ,    _07d_earn_per_neg100_neg50,
+        _07d_earn_per_neg50_pos0,        _07d_earn_per_pos0_pos100,     
         _07d_earn_per_pos100_posmax,   _07d_earn_per_pos400_posmax  ,   ) = get_ana_data_lastdays( df=cur_df, intervaldays=7)
         
         # (_15d_cost, _15d_earn, _15d_earnper, _15d_difcost, _15d_difearn, _15d_difper, 
         # _15d_costmedian, _15d_costmean,    _15d_trans ,   ) = get_ana_data_lastdays( df=cur_df, intervaldays=15)
         
         (_30d_cost, _30d_earn, _30d_earnper, _30d_difcost, _30d_difearn, _30d_difper, 
-        _30d_costmedian, _30d_costmean,    _30d_trans ,   _30d_earn_per_neg100_neg30,
-        _30d_earn_per_neg30_pos0,        _30d_earn_per_pos0_pos100,   
+        _30d_costmedian, _30d_costmean,    _30d_trans ,   _30d_earn_per_neg100_neg50,
+        _30d_earn_per_neg50_pos0,        _30d_earn_per_pos0_pos100,   
         _30d_earn_per_pos100_posmax, _30d_earn_per_pos400_posmax ,  ) = get_ana_data_lastdays( df=cur_df, intervaldays=30)
         
         arr_one_ana_data = [
             str_dalaoaddress,
-            f"https://gmgn.ai/sol/address/{str_dalaoaddress}",
+            f"https://gmgn.ai/eth/address/{str_dalaoaddress}",
             "",
     
             _07d_cost,
@@ -166,13 +166,12 @@ def main():
             _07d_costmedian,
             _07d_costmean,
             _07d_trans,
-            _07d_earn_per_neg100_neg30,
-            _07d_earn_per_neg30_pos0,
+            _07d_earn_per_neg100_neg50,
+            _07d_earn_per_neg50_pos0,
             _07d_earn_per_pos0_pos100,
             _07d_earn_per_pos100_posmax,
-           (_07d_earn_per_pos100_posmax -_07d_earn_per_neg100_neg30 ) / _07d_trans if _07d_trans!=0 else 0,
-           (_07d_earn_per_pos400_posmax *2 +    _07d_earn_per_pos100_posmax - _07d_earn_per_pos400_posmax  -_07d_earn_per_neg100_neg30  ) / _07d_trans if _07d_trans!=0 else 0,
-		
+           (_07d_earn_per_pos100_posmax -_07d_earn_per_neg100_neg50 ) / _07d_trans if _07d_trans!=0 else 0,
+           (_07d_earn_per_pos400_posmax *2 +    _07d_earn_per_pos100_posmax - _07d_earn_per_pos400_posmax  -_07d_earn_per_neg100_neg50  ) / _07d_trans if _07d_trans!=0 else 0,
 
 
             _30d_cost,
@@ -184,13 +183,13 @@ def main():
             _30d_costmedian,
             _30d_costmean,
             _30d_trans,
-            _30d_earn_per_neg100_neg30,
-            _30d_earn_per_neg30_pos0,
+            _30d_earn_per_neg100_neg50,
+            _30d_earn_per_neg50_pos0,
             _30d_earn_per_pos0_pos100,
             _30d_earn_per_pos100_posmax,
-            (_30d_earn_per_pos100_posmax -_30d_earn_per_neg100_neg30 )/ _30d_trans if _30d_trans!=0 else 0,
-             (_30d_earn_per_pos400_posmax *2 +    _30d_earn_per_pos100_posmax - _30d_earn_per_pos400_posmax  -_30d_earn_per_neg100_neg30  ) / _30d_trans if _30d_trans!=0 else 0,
-		
+            (_30d_earn_per_pos100_posmax -_30d_earn_per_neg100_neg50 )/ _30d_trans if _30d_trans!=0 else 0,
+            (_30d_earn_per_pos400_posmax *2 +    _30d_earn_per_pos100_posmax - _30d_earn_per_pos400_posmax  -_30d_earn_per_neg100_neg50  ) / _30d_trans if _30d_trans!=0 else 0,
+
 
     
         ]
@@ -215,12 +214,12 @@ TotalAnalysis_columns = [
     "07d_costmedian",
     "07d_costmean",
     "07d_trans",
-        "07d_earn_per_neg100_neg30",
-        "07d_earn_per_neg30_pos0",
-        "07d_earn_per_pos0_pos100",
-        "07d_earn_per_pos100_posmax",
-        "07d_earn_pos_dif",
-        "07d_earn_pos_dif_4x",
+    "07d_earn_per_neg100_neg50",
+    "07d_earn_per_neg50_pos0",
+    "07d_earn_per_pos0_pos100",
+    "07d_earn_per_pos100_posmax",
+    "07d_earn_pos_dif",
+    "07d_earn_pos_dif_4x",
 		
  
     "30d_cost",
@@ -232,13 +231,13 @@ TotalAnalysis_columns = [
     "30d_costmedian",
     "30d_costmean",
     "30d_trans",
-  "30d_earn_per_neg100_neg30",
-        "30d_earn_per_neg30_pos0",
-        "30d_earn_per_pos0_pos100",
-        "30d_earn_per_pos100_posmax",
-           "30d_earn_pos_dif",
-            "30d_earn_pos_dif_4x",
- 
+    "30d_earn_per_neg100_neg50",
+    "30d_earn_per_neg50_pos0",
+    "30d_earn_per_pos0_pos100",
+    "30d_earn_per_pos100_posmax",
+    "30d_earn_pos_dif",
+    "30d_earn_pos_dif_4x",
+
 ]
 
 

+ 26 - 0
src/code/019_simply_filter_total_ana.py

@@ -0,0 +1,26 @@
+
+from base_class import BaseVariableFunction
+from base_class import *
+baseclass = BaseVariableFunction(__file__)
+
+old_print = print
+ 
+
+def timestamped_print(*args, **kwargs):
+    old_print(datetime.datetime.utcnow().replace(
+        microsecond=0), *args, **kwargs)
+
+
+print = timestamped_print
+print('\n'*5)
+print(f"{'{:<6}'.format('enter')}  ----------------NOTE-----------NOTE---------------")
+
+# 
+# df["07d_difper"]>=0.1 & ["30d_difper"]>=0.1 & df["30d_trans"]>=7 
+
+
+
+ 
+        
+
+print(f"{'{:<6}'.format('END')}  ----------------NOTE-----------NOTE---------------")

BIN
src/librarydata/dalao_total_ana_gmgn/totalana.xlsx